[5.5] Estimating Experimental Uncertainty

Review Experimental Uncertainty

 Experimental uncertainty - the estimated amount by which a measurement might be in error.

 The uncertainty goes between the number and the unit.

• Eg. 23.00 ± 0.01 mm

Review Range

 Range - A range includes the set of possible values in a measurement.

Expressed as:

Lowest value - Highest value

• Eg. 25.10 cm - 25.25 cm

Estimating the Experimental Uncertainty from A Scale

1/10 of Method

 To calculate the experimental uncertainty we will use the following equation:

Experimental Uncertainty
$$= \frac{1}{10} \times \text{the smallest } \underline{\text{un}} \text{numbered subdivision}$$

1/10 of Method

Experimental Uncertainty
$$= \frac{1}{10} \times \text{the smallest } \underline{\text{un}}$$
 numbered subdivision

- Example: Using the scale. Estimate the experimental uncertainty
- EU = _____

1/10 of Method

Experimental Uncertainty
$$= \frac{1}{10} \times \text{the smallest } \underline{\text{un}}$$
 numbered subdivision

<u>Example:</u> Using the scale. Estimate the experimental uncertainty

• EU =
$$\frac{1}{10}$$
 × 0. 1 cm

• EU = 0.01 cm

Practice #2

Ex. 2) Using the numbers on the scale:

- a) Determine the measurement and write them with the experimental uncertainty
- b) Write the range of the measurement

Practice #2

Ex. 2) Using the numbers on the scale:

- a) Determine the measurement and write them with the experimental uncertainty
- b) Write the range of the measurement

Addition (+) and Subtraction (-)

 When performing additions and subtractions we simply need to add together the <u>absolute</u> <u>uncertainties</u>.

Rules:

$$(A \pm a) + (B \pm b) = (A + B) \pm (a + b)$$

$$(A \pm a) - (B \pm b) = (A - B) \pm (a + b)$$

Calculations with Uncertainties Addition (+) and Subtraction (-)

• Example:

Add the values **1.2** \pm 0.1, **12.01** \pm 0.01, **7.21** \pm 0.01

Step 1: 1.2 + 12.01 + 7.21 = 20.42 (3 sig fig)

Step 2: 0.1 + 0.01 + 0.01 = 0.12 (1 sig fig)

Answer: **20.4** ± 0.**1**

Addition (+) and Subtraction (-)

 Practice: Find the measurement and the experimental uncertainty in each set of measurement values. Use the correct significant figures!

c)
$$(186 \pm 2 \text{ cm}) - (147 \pm 3 \text{ cm}) =$$

d)
$$(11.0 \pm 0.1 \text{ cm}) - (12.2 \pm 0.4 \text{ cm}) - (11.8 \pm 0.2 \text{ cm}) = ______$$

Addition (+) and Subtraction (-)

 Practice: Find the measurement and the experimental uncertainty in each set of measurement values. Use the correct significant figures!

a)
$$(186 \pm 2 \text{ cm}) + (147 \pm 3 \text{ cm}) = _____333 \pm 5 \text{ cm}$$

b)
$$(143 \pm 1 \text{ mL}) + (144 \pm 4 \text{ mL}) + (141 \pm 2 \text{ mL}) = 428 \pm 7 \text{ mL}$$

c)
$$(186 \pm 2 \text{ cm}) - (147 \pm 3 \text{ cm}) = 39 \pm 5 \text{ mL}$$

d)
$$(41.0 \pm 0.1 \text{ cm}) - (12.2 \pm 0.4 \text{ cm}) - (11.8 \pm 0.2 \text{ cm}) = 17.0 \pm 0.7 \text{cm}$$

Multiplication (*) and Division (÷)

• When performing multiplications and divisions, or, dealing with powers, we simply add together the **percentage** (%) uncertainties.

Example:

Multiply the values: 1.2 ± 0.1 , 12.01 ± 0.01

Step 1: $1.2 \times 12.01 = 14$ (2sigfig)

Step 2: $(0.1 / 1.2) \times 100 = 8.33 \%$ (1sig fig)

Step 3: $(0.01 / 12.01) \times 100 = 0.083\%$ (1sig fig)

Step 4: 8.33 + 0.083 = 8.413 % (1sig fig)

Answer: 14 ± 8 % OR **14 ± 1**

 Practice: Find the measurement and the experimental uncertainty in each set of measurement values. Use the correct significant figures!

a)
$$(14.01 \pm 0.01 \text{ mL}) \times (1.6 \pm 0.1 \text{ mL}) =$$

b)
$$(13.04 \pm 0.02 \text{ cm}) \div (1.2 \pm 0.1 \text{ cm}) =$$

a)
$$(14.01 \pm 0.01 \text{ mL}) \times (1.6 \pm 0.1 \text{ mL}) =$$

Step 1:
$$14.01 \times 1.6 = 22.416$$
 (2sigfig)

Step 2:
$$(0.01 / 14.01) \times 100 = 0.0714 \%$$
 (1sig fig)

Step 3:
$$(0.1 / 1.6) \times 100 = \underline{6}.25\%$$
 (1sig fig)

Step 4:
$$\underline{6}.25\% + 0.0\underline{7}14\% = \underline{6}.3214\%$$
 (1sig fig)

Answer: 22 ± 6 % mL

b)
$$(13.04 \pm 0.02 \text{ cm}) \div (1.2 \pm 0.1 \text{ cm}) =$$

Step 1:
$$13.04 \div 1.2 = 10.867$$
 (2sigfig)

Step 2:
$$(0.02 / 13.04) \times 100 = 0.1533 \%$$
 (1sig fig)

Step 3:
$$(0.1 / 1.2) \times 100 = 8.333\%$$
 (1sig fig)

Step 4:
$$0.\underline{1}533 \% + \underline{8}.333 \% = \underline{8}.48 \%$$
 (1sig fig)

Answer: 11 ± 8 % cm

HOMEWORK

Complete the following questions provided as well as:

Textbook: pg. 35 - 36 - #51-52

<u>Textbook:</u> Determine the uncertainty for each measurement for questions:

pg. 32-34 - #48 abc, 49ab and 50abc

HOMEWORK

Complete the following questions provided as well as:

Textbook: pg. 35 - 36 - #51-52

Textbook: Determine the uncertainty for each measurement for questions:

pg. 32-34 - #48 abc, 49ab and 50abc

1. Multiply:
$$(5.0 \text{ m} \pm 4.0\%) \times (3.0 \text{ s} \pm 3.3\%) =$$

3. Add:
$$(6.5 \pm 0.5)$$
 m + (3.3 ± 0.1) m = _____

HOMEWORK

Complete the following questions provided as well as:

Textbook: pg. 35 - 36 - #51-52

Textbook: Determine the uncertainty for each measurement for questions:

pg. 32-34 - #48 abc, 49ab and 50abc

- 1. Multiply: $(5.0 \text{ m} \pm 4.0\%) \text{ x} (3.0 \text{ s} \pm 3.3\%) = (15.0 \text{ m} \cdot \text{s} \pm 7.3\%)$
- 2. Divide: $(5.0 \text{ m} \pm 4.0\%) \div (3.0 \text{ s} \pm 3.3\%) = (1.7 \text{ m/s} \pm 7.3\%)$
- 3. Add: (6.5 ± 0.5) m + (3.3 ± 0.1) m = (9.8 ± 0.6) m
- 4. Subtract: (6.5 ± 0.5) m $-(3.3 \pm 0.1)$ m = (3.2 ± 0.6) m